Elderly Fall Detection using Lightweight Convolution Deep Learning Model
نویسندگان
چکیده
منابع مشابه
Melanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملEmbedded Real-Time Fall Detection Using Deep Learning For Elderly Care
This paper proposes a real-time embedded fall detection system using a DVS(Dynamic Vision Sensor)(Berner et al. [2014]) that has never been used for traditional fall detection, a dataset for fall detection using that, and a DVSTN(DVS-Temporal Network). The first contribution is building a DVS Falls Dataset, which made our network to recognize a much greater variety of falls than the existing da...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملLearning Word Vectors in Deep Walk using Convolution
Textual queries in networks such as Twitter can have more than one label, resulting in a multi-label classification problem. To reduce computational costs, a low-dimensional representation of a large network is learned that preserves proximity among nodes in the same community. Similar to sequences of words in a sentence, DeepWalk considers sequences of nodes in a shallow graph and clustering i...
متن کاملChord Detection Using Deep Learning
In this paper, we utilize deep learning to learn high-level features for audio chord detection. The learned features, obtained by a deep network in bottleneck architecture, give promising results and outperform state-of-the-art systems. We present and evaluate the results for various methods and configurations, including input pre-processing, a bottleneck architecture, and SVMs vs. HMMs for cho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
سال: 2021
ISSN: 1309-4653
DOI: 10.17762/turcomat.v12i2.1814